
Learning Agile Locomotion Skills with a Mentor

Atil Iscen1∗, George Yu1∗, Alejandro Escontrela1,2, Deepali Jain1, Jie Tan1 and Ken Caluwaerts1

Abstract— Developing agile behaviors for legged robots re-
mains a challenging problem. While deep reinforcement learn-
ing is a promising approach, learning truly agile behaviors
typically requires tedious reward shaping and careful cur-
riculum design. We formulate agile locomotion as a multi-
stage learning problem in which a mentor guides the agent
throughout the training. The mentor is optimized to place a
checkpoint to guide the movement of the robot’s center of
mass while the student (i.e. the robot) learns to reach these
checkpoints. Once the student can solve the task, we teach the
student to perform the task without the mentor. We evaluate
our proposed learning system with a simulated quadruped
robot on a course consisting of randomly generated gaps and
hurdles. Our method significantly outperforms a single-stage
RL baseline without a mentor, and the quadruped robot can
agilely run and jump across gaps and obstacles. Finally, we
present a detailed analysis of the learned behaviors’ feasibility
and efficiency.

I. INTRODUCTION

Developing agile behaviors for legged robots remains a
challenging problem. Agile locomotion skills require fast re-
actions, coordinated control of legs, precise manipulation of
contact forces, and robust balance control. Hand-engineering
such controllers requires significant expertise and often te-
dious manual tuning. Deep Reinforcement Learning (DRL) is
a promising approach that can acquire locomotion controllers
automatically. However, learning truly agile motions over
complex terrains, such as jumping over gaps, remains an
open problem.

This paper formulates the challenge of learning agile
locomotion with a mentor-student relationship and uses a
multi-stage reinforcement learning approach to tackle the
problem. In this process, a mentor learns to perform a task
and reward shaping by placing checkpoints to guide the
movement of the robot’s center of mass, while the student,
the robot itself, learns to complete the task by collecting
these checkpoints.

We divide the training pipeline into three stages. In the
first stage, a simplified task is presented to train the student
and find the task’s best mentor. In the second stage, we
focus on generalization: we introduce randomized and more
challenging tasks and deploy a curriculum to overcome the
increased difficulty. In the last stage, the robot learns to
rely on its perception input to traverse the terrain, with
decreasing, and eventually zero reliance on the mentor. After
the last stage, the robot can traverse the terrain agilely
without using privileged information provided by the mentor.

∗Equal contribution & corresponding authors.
1 Robotics at Google. {atil,georgeyu,aescontrela,

jaindeepali,jietan,kencaluwaerts}@google.com
2 Georgia Institute of Technology. aescontrela@gatech.edu

Fig. 1. Snapshot of the agile and natural jumping behaviors that emerge
from policies trained using our three-stage method.

Each stage of training is warm-started using the best policy
from the previous stage.

Figure 1 shows the resulting behaviors from our trained
policies. We show that our method significantly outperforms
a single-stage RL baseline without a mentor, which is stuck
at a local maxima caused by the gap. The main contributions
of our paper include:

1) A novel formulation of developing agile locomotion
controllers as a reinforcement learning problem with
a mentor-student relationship, which significantly im-
proves the success rate of learning;

2) A three-stage training pipeline in which agile locomo-
tion skills emerge automatically;

3) A detailed analysis of a quadruped robot’s learned mo-
tion across a challenging obstacle course in simulation.

II. RELATED WORK

In decades of research on legged robots [1], researchers
have explored different gaits [2], [3] and morphologies [4],
[5], [6], [7] to produce agile behaviors that mimic those
observed in the animal kingdom. Using simplified dynamics
and model-predictive control (MPC), the MIT Cheetah can
run at 6m s−1 and jump over 0.4m obstacles [8], [9]. Similar
techniques have enabled ATLAS [10], a humanoid robot, to
backflip and even parkour across an obstacle course. These
optimal control-based techniques often require an accurate
model, deep prior knowledge, and tedious tuning. To reduce
the amount of manual work, heuristics were extracted to
regularize the MPC formulation, which enabled agile gaits
on the MIT Mini Cheetah platform [11]. Lately, MPC has
also been combined with learned models to achieve faster
on-robot learning of locomotion [12].

Researchers have recently successfully applied deep rein-
forcement learning to automatically learn locomotion con-
trollers [13], [14], [15], [16], [17], [18]. Numerous agile
behaviors were demonstrated in simulation [19], [20], [21],
[22]. However, learning agility, even in simulation, still
presents many challenges. Extensive reward shaping, expert

ar
X

iv
:2

01
1.

05
54

1v
1

 [
cs

.R
O

]
 1

1
N

ov
 2

02
0

demonstrations [17], [23], curriculum learning [22], and
multi-agent learning [24] are often needed for successful
training. Tang et al. [24] formulate learning agility as an
adversarial multi-agent game, inspired by the pursuit-escape
behaviors in nature to encourage the emergence of agile
running gaits. The concept of mentor-student in our method
resembles a multi-agent learning setting. A key difference
in our formulation is that the mentor and the student work
collaboratively to accomplish a common goal: the student
successfully acquires agile gaits. This makes our method
simpler and more robust because training an ensemble of
adversaries to stabilize learning is unnecessary in a collabora-
tive learning environment. As a result, our method can tackle
more complex tasks. Our idea that the mentor provides the
student with privileged information to help it learn is similar
to “Learning by Cheating” [25]. However, we use a different
approach to remove the need for this privileged information
at the last stage of our pipeline.

III. PROBLEM DEFINITION

Our goal is to train an agile locomotion policy with which
a quadruped robot can jump over randomly placed gaps
and hurdles. As in standard RL environments formulated as
Markov Decision Processes, we define the problem in terms
of state, reward and actions. At any time step t, the robot
takes an action at ∈ A and it receives a set of observations
(st ∈ S) and an associated reward (rt ∈ R). The state is
composed of

st = [gT
t ,o

T
t ,a

T
t−1]

T ,

where ot = [oT
ENC,t,o

T
IMU,t,o

T
lidar,t]

T contains the sensor obser-
vations (motor encoders, IMU and LiDAR, see Section V).
gt = [gd,t, gh,t, gz,t]

T includes the distance gd, relative
heading gh, and relative height gz , to the target position,
and at−1 is the previous action taken by the robot.

A basic locomotion task is to achieve forward motion
while maintaining the balance of the robot. More complex
tasks consist of uneven terrains or obstacles that require more
advanced maneuvers or skills. In this work, we focus on the
agility aspect of quadruped locomotion, where the desired
tasks require speed, fast response, and a combination of
different types of behaviors based on the perception of the
environment. These agile behaviors require gaits with long
flight phases instead of (quasi-)static gaits where multiple
feet stay in contact with the ground at any given time.

To train and test our algorithm, we designed a course
segment 2m in width and 6m in length in which the robot
moves from one end to the other. The course contains a
large gap (0.9m) that the robot has to cross to reach the end.
The desired final behavior consists of running at high speed,
transitioning to jumping based on sensed distance to the gap,
a flight phase, landing, and transitioning back to running. In
another more complex scenario, we also introduce a vertical
hurdle that requires more vertical motion than the forward
leap. Getting across the hurdle requires accurately timing the
jump at the right place and with the right pose to pass the
hurdle. The reward function consists of two components that

Fig. 2. Our method introduces a mentor to the system in stage 1 of the
training. The mentor provides reward shaping and extra observations based
on the ground truth. Later in the training (stage 3), the robot learns not to
rely on these observations and we remove the mentor from the system.

provide a dense and a large sparse reward. The dense reward
is the negative change in distance to the goal location, and
the sparse reward is a large bonus for reaching the target
location:

rt = (gd,t − gd,t−1) +BgI(gd,t ≤ rg),

where gd,t is the distance to the goal, Bg is the bonus for
reaching the target, rg is the threshold distance for reaching
the target, and I(·) is the indicator function.

The proposed two tasks (gap and gap with a hurdle)
pose a challenge to RL methods due to the existence of a
steep local maximum (being unable to cross the gap), lack
of ground truth observations (e.g. heightmap), multi-modal
observations (LiDAR, IMU and motor encoders) and the
need for a transition between diverse behaviors (i.e. running,
jumping, landing). To tackle this challenge, we apply a three-
staged training approach, detailed in the Methods section
below.

IV. METHOD

To handle the challenges posed by the agile locomotion
objective, we propose a method that uses a combination of:

• Multi-stage population-based training.
• Task and reward shaping using a mentor.
• Curriculum to master hard tasks and to improve gener-

alization.
We first approach the problem by sequencing the training

into different stages, to focus on solving each subproblem,
and build up to the final task. In particular, we propose a
three-staged learning framework to train the policy, where
each stage narrows the problem scope. Our method is sum-
marized in Algorithm 1. We define the three training stages
as:

1) Defining the right mentor on a simplified problem.
2) Generalization to the original problem scope.
3) Removing the dependence on the mentor.

Between individual stages, we carry only the best policy of
the population to the next stage, and warm start the next
stage of training.

In the first stage, we simplify the problem by fixing
the location of the gap with respect to the robot’s starting
position. Specifically, the start of the gap is positioned 2m
ahead of the robot. Learning starts with a small (0.3m)
gap. As training progresses, the size is randomly sampled
from a distribution where we gradually step up the difficulty

Fig. 3. Illustration of the checkpoint area defined by the mentor’s param-
eters. Checkpoint area’s position and radius are defined using 5 parameters
(m = M1..M5). These parameters are optimized as a hyperparameter in
the first stage of the training. The checkpoint is then removed using dropouts
during the third stage of the training.

by linearly increasing the upper bound to 0.9m based on
the number of training steps. This process is referred to as
curriculum(lower bound, upper bound) in the pseudocode.
In addition to simplification of the problem, the main goal
of the first stage is to introduce the concept of the mentor
to the robot. The mentor and robot collaborate to achieve
maximal reward on the task. In particular, the mentor aids
the robot by providing (1) both reward and task shaping in
form of a checkpoint (2) additional privileged information in
the form of ground-truth observations.

The mentor is responsible for selecting an intermediate
checkpoint location that the robot has to reach. The robot
collects dense rewards for getting closer to and a large reward
when it reaches the checkpoint. One could allow the mentor
to adapt online, making decisions at each time step, which
would make the problem a multi-agent system with simul-
taneous learners. Instead, for simplicity, we set the mentor
to be constant and define it as a set of hyperparameters
(m = {Mi}i=1,...,5 ∈ R5) for the RL algorithm. At every
time step, the mentor provides the checkpoint’s position in
space relative to the robot’s position and orientation. This
additional information is appended to the robot’s original
observations (Fig. 2). The mentor proposes the checkpoint
location based on the gap location and the gap size (Fig. 3).
Specifically,

Cx = gx + gsM1 +M2,

Cz = h+ gsM3 +M4,

rg =M5.

Cx and Cz indicate the checkpoint’s x and z coordinates, gx
and gs stand for the gap’s starting location (x coordinate)
and size, h is a constant for default walking height (0.3m).
The last variable M5 is the checkpoint radius, which is the
threshold distance that determines whether the robot has
successfully collected the checkpoint. Once the checkpoint is
reached, the extra reward is collected and the checkpoint is
assigned to the end of the track as goal location for the rest of
the episode. The mentor and gap configurations are defined
in the x-z plane. However, the robot is not constrained to
this vertical plane and learning to robustly move forward is
part of the task.

Algorithm 1 Training using a mentor.
Stage 1: Find the right mentor.
gs ← curriculum(0.3m, 0.9m)
gx ← 2.0m
for i ∈ [1..90] do

mi ← uniform(M1..5) // sample random mentor
Rstage 1

i , πi ← train(π0,mi, gs, gx) //in parallel ∀i
mbest, πbest ← argmaxi(R

stage 1
i)

Stage 2: Generalization to original problem scope.
gs ← 0.9m
gx ← curriculum(2.0m, 3.0m)
for j ∈ [1..30] do

Rstage 2
j , πj ← train(πbest,mbest,gs,gx) //in parallel ∀j

mbest, πbest ← argmaxj(R
stage 2
j)

Stage 3: Remove dependency on mentor.
Pd ← curriculum(0.0, 1.0) // gt dropout
gs ← 0.9m
gx ∼ U(2.0m, 3.0m)
for k ∈ [1..30] do

Rstage 3

k , πk ← train(πbest,mbest,gs,gx) //in parallel ∀k
πfinal ← argmaxk(R

stage 3

k)

The second stage of the training is about generalization
from the simpler task to the original task where the gap
location is not fixed. This stage addresses the subproblem of
stochasticity in the gap position–the problem is significantly
harder, because the robot needs to adjust its running behavior
prior to reaching the gap and avoid a flight phase just before
the gap. This stage can be considered as learning to transition
to a jumping position at arbitrary gap placements. We warm
start all the policies with the best policy of the previous stage
and fix the mentor to the best set of hyperparameters from
the first stage. The location of the gap is chosen randomly at
each episode, and the range of the possible values is drawn
from a uniform distribution gx ∼ U(l, h), where the upper
bounds h is increased linearly based on the training steps.
At the end of the second stage, we obtain policies that can
cross gaps positioned at different locations along the path.

In the third stage, we aim to eliminate the student’s
dependency on the mentor. The student policy needs to rely
solely on its proprioceptive sensors (LiDAR, IMU and motor
encoders in our case) instead of the privileged checkpoint
information fed by the mentor. We approach this problem
as dropping out the mentor. At each time step, the dropout
probability (Pd) determines if the observations provided by
the mentor should be replaced by dummy values. We use
a curriculum to gradually increase Pd as the number of
training steps increases. Throughout the curriculum learning,
the robot gradually learns to rely on its own sensors instead
of the mentor’s increasingly noisy guidance. At the end of
the curriculum, the dropout is 100% where the robot learns
to complete the task without any help from the mentor.

Every timestep, our controller obtains LiDAR scans
(olidar,t), IMU readings (oIMU,t) and joint angles (oenc,t) while it

Fig. 4. Policy Architecture. Depth scan provided by the LiDAR is flattened
and separately encoded before being merged with other inputs. Value
function and policy are parameterized by 2-layer networks of dimensions
(512, 256) and (256, 128), respectively, with ReLU activations. LiDAR is
fed into an encoder of dimensions (32, 16, 4) and then passed to the policy.

outputs the desired motor positions (at) which are converted
to torques using a PD controller. Within the controller, we use
a trajectory generator the same way as it was introduced by
Iscen et al in [26]. Policies Modulating Trajectory Generators
(PMTG) is based on the cyclic motion of the legs using prior
knowledge, but it still provides the freedom to achieve agile
behaviors using TG’s parameters and residual actions.

At the heart of our controller, we have the neural network
(NN) which is trained via RL or ES. We chose different
NN architectures based on the type of the inputs and the
algorithm used. As the training algorithm, we use Proximal
Policy Optimization (PPO) [27] but also test our method
with Evolutionary Strategies (specifically Augmented Ran-
dom Search (ARS) [28]). The architecture designed for PPO
has different components based on the type of inputs (Fig.
4). The LiDAR input has its own separate encoder with a
bottleneck, while proprioceptive inputs such as IMU, motor
angles, last action and TG state go through another encoder.
The outputs of these two encoders are concatenated and
fed into the policy network, which outputs a multivariate
Gaussian distribution of actions to sample from. As detailed
in [21], this architecture achieves a separation of concerns
between the basic locomotion skills and terrain perception
and navigation. This new architecture enables the agent to
adapt its smooth locomotion behaviors to the surrounding
terrain. In contrast with PPO, we use a much simpler NN
for ARS, where all the inputs are concatenated and passed
through a 2-layer fully connected NN, where each layer
contains 32 units.

V. EXPERIMENTAL SETUP

The simulated quadruped robot has three actuators per leg
(12 total), corresponding to abduction, hip, and knee joints.
We simulate a small quadruped, similar in size, actuator
performance, and range of motion to the MIT Mini Chee-
tah [29] (9kg) and Unitree A11 (12kg) robots, which have
both demonstrated highly agile skills. We use the Unitree
A1’s URDF description2, which is available in the PyBullet
simulator [30].

1https://www.unitree.com/products/a1/
2https://github.com/unitreerobotics

Fig. 5. Simplified 2D illustration of the LiDAR observations olidar.

As we focus on agile skills, it is important to use re-
alistic dynamics and actuator models that are physically
plausible. To this end, we combine our PyBullet simulation
environment [13] with a more advanced actuator model based
on the specifications of the T-Motor AK80-6, which is a
commercially available actuator with detailed specifications
and similar characteristics to the Mini Cheetah’s and A1
robot’s actuators. Our actuator simulation is based around
a linear DC motor model. To reproduce the actuator’s per-
formance near its rated velocity, we linearly reduce its torque
constant between the rated speed 38.2rad s−1 and the zero
torque speed 44.5rad s−1 (estimated). This model accurately
reproduces the torque/speed curve provided by a T-Motor.
The peak output torque, rated speed and peak mechanical
power of the actuator are approximately 12Nm, 38.2rad s−1

and 458W. Hence, our simulation is conservative compared
to the Mini Cheetah (17Nm, 40rad s−1, 680W [29]) and
A1 (33.5Nm, 21rad s−1, 703W). This level of detailed
simulation is to ensure that our simulation results can be
reproduced in hardware. However, we make no claims about
the direct sim-to-real transfer performance of our simulation
model.

Our policies compute joint target positions (at), which
are converted to target joint torques by a PD controller
running at 1kHz. Rigid body dynamics and contacts are
simulated at 1kHz as well and the internal actuator dynamics
are simulated at 10kHz. In other words, the position and
velocity (provided by PyBullet) and the desired torque (pro-
vided by the PD controller) are sent to the actuator model
every 1ms. The actuator model then computes 10 internal
100µs steps and provides the effective output torque of the
actuator, which is then used by PyBullet to compute joint
accelerations. The simulation environment is configured to
use an action repeat of 10 steps, which means that our
policies compute a new action at and receive a state st every
10ms (100Hz).

As an exteroceptive sensor, we use a simulated LiDAR
sensor to provide the agent with information of the sur-
rounding terrain. This simulated LiDAR supports 20 × 20
channels with a 360◦ horizontal and 180◦ vertical field of
view (Fig. 5). We normalize the 3D depth scan to the range
[0, 1] and flatten to a vector (olidar).

In addition to the LiDAR, the robot has the following
proprioceptive sensors:

• IMU: roll, pitch, roll rate, pitch rate and yaw rate
(oIMU = [φ, θ, θ̇, φ̇, ψ̇]T).

• Motor angle encoders (oENC = [q1, ..., q12]
T).

https://www.unitree.com/products/a1/
https://github.com/unitreerobotics

Fig. 6. Learning curves of learning to cross a gap of 0.9 meters using
PPO. We use three-stage training to find the mentor, generalization and
mentor dropout while we warm start each stage with the best policy from
the previous stage and use curriculum. ’Train’ shows the return obtained
during training, ’Eval’ indicates evaluation over final state of the curriculum.
The plots are averaged over 30 runs, shaded area indicates minimum and
maximum of all the runs. Our framework learns to cross a gap and reach
the top reward while the baseline PPO struggles at a local maxima.

Fig. 7. Learning curves for crossing a gap of 0.9m using ARS. We use
three-stage training as in PPO. Each stage is warm started from the best
policies from the previous stage. The dashed line is the training return,
solid line is the evaluation, and shaded region represents the maximum and
minimum rewards reached by the set of policies in each phase.

VI. RESULTS

We design experiments to validate the efficacy of our
training method, and also perform a detailed analysis of the
learned agile gaits. In particular, we show that:

• Our method significantly outperforms a single-stage RL
baseline without a mentor;

• Our method is compatible with different learning algo-
rithms;

• Our method leads the robot to learn various agile
behaviors, based on its own perception;

• Our method results in policies with reasonable mechan-
ical characteristics.

A. Learning Results

In Fig. 6, we illustrate our results in learning to cross a
gap with PPO, and show that our three-stage training method
significantly outperforms a single-stage RL baseline without
a mentor. Evaluations are performed against the end state of
each stage.

• Stage 1: Evaluate against gap at a fixed distance, with
checkpoint observations.

• Stage 2: Evaluate against multiple different gap posi-
tions, with checkpoint observations.

• Stage 3: Evaluate against the final task: multiple differ-
ent gap positions with no checkpoint observations.

Fig. 8. Learning curves for crossing a hurdle of 0.2m with a gap of 0.45m.
The agent is trained the same way as Figure 6, using PPO. The variance is
larger due to increased complexity of the problem. Our framework reaches
a high return accomplishing the task in most of the test cases.

• Baseline: Train without a mentor and evaluate against
the final task: multiple different gap positions with no
checkpoint observations.

The baseline gets stuck at a local maxima at the gap location,
and fails to solve the task. In contrast, our method success-
fully accomplishes the task and achieves a high reward after
the final stage.

The first stage learns to run and jump over a gap at a
fixed location with the help of a mentor. We use 90 runs in
parallel to test different hyperparameters as mentors. Due to
differences of the mentors, the variation in the performance
between the runs is rather significant in this stage. Some of
the runs converge to achieve the task at approximately 30k
simulation steps. We carry the best policy and the best mentor
to the second stage, to learn to cross gaps that are randomly
located. As the stochasticity grows, we see a temporary
decrease in performance before a rebound when the policy
adapts to the task. In the final stage, we gradually remove the
mentor. After 40k more steps, the policies learn to achieve
high returns without the help of the mentor.

Next, we show that our method is not specific to a single
learning algorithm. We also tackle the gap-jumping problem
with ARS. Fig. 7 presents the results using ARS on the
same task as in Fig. 6. Although in this experiment, we use
a smaller 2-layer fully-connected NN as input to PMTG,
we find that our three-stage training still yields significant
improvements over the baseline.

In Fig. 8, we demonstrate more impressive agile behaviors
on a difficult extension of the gap jumping task. We fix the
gap size to be 0.45m, and place a hurdle of height 0.2m at
the center of the gap. This task is more challenging as the
robot cannot get to the other side with pure speed. The hurdle
requires a significant (0.3m) vertical motion and a harder
landing to accomplish the task. Our method successfully
solves the task and achieves a high reward after the third
stage of the training. Compared to Fig. 6, the variance of
learning is larger, and returns drop lower at the start of
second and third stages of the training, which is likely due
to the increased difficulty of the task.

B. Analysis

The high returns in learning curves are promising, but to
deploy the learned gaits on a physical robot, we have to

Fig. 9. Sample trajectories of the Center of Mass (CoM) and feet of the
emerged behaviors. Top 3 plots show the robot jumping over 0.9m gaps
placed at different locations. The robot adjusts its steps based on the gap
location. The last figure shows jumping over a hurdle.

analyze the characteristics of the emerged behavior to de-
termine its feasibility. While we showcase sample behaviors
qualitatively in our supplementary video, here we dive deeper
into quantitative analysis.

One goal of our generalization is to obtain different agile
behaviors by the robot based on different gap or hurdle
locations. In Fig. 9, we show various behaviors learned by
the robot when the gap or hurdle position varies. The plots
demonstrate that the robot takes different (lower or higher)
jumping trajectories, and adjusts foot placement right before
jumping based on the gap or hurdle’s location. For example,
the robot can cross a gap located at 2.15m without extra
vertical movement (1st row of Fig. 9). In contrast, when
the gap starts at 3.05m (3rd row of Fig. 9), the robot steps
further forward and performs a bigger leap, during which
the front feet reach 0.4m. In the presence of a hurdle (4th
row of Fig. 9), the robot jumps 0.3m higher than its normal
running height to a peak of 0.6m.

Lastly, we analyze the mechanical characteristics of the
emerged behaviors. We take a single episode and look at
the motor data, including torque, angular speed and power.
Figure 10 shows an episode where the gap starts at 2.9m. The
robot performs a big leap to cross the gap, and its CoM is
lowered during landing phase. The peak velocity of the robot
is roughly 3.2m s−1. The average torque of the 12 motors
fluctuates between 0 and 7Nm, and the maximum torque
stays below 13 Nm. Cost of Transport (Power

Weight×Velocity) is a
common measure used to calculate the energy efficiency of
a gait. Once the robot reaches the velocity of 1.0m s−1, the

Fig. 10. Analysis of one of the evaluations where the robot crosses the
gap located at 2.75m from the starting point. Flight phase can be seen
between t = 1.55s and t = 1.7s. The Cost of Transport (CoT), calculated
as Power

Weight*Velocity , lowers with increasing speed.

cost of transport during the rest of the episode fluctuates
between 0 and 3JN−1 m−1. The flight phase of the robot is
between t = 1.55s and t = 1.70s where both the power and
CoT are close to 0. While the learned gaits are optimized
for agility rather than energy efficiency, the values that we
obtain are reasonable compared to other simulation models
such as Cheetah-cub [31]. On the other hand, CoT calculated
in simulation can be significantly lower than that on robots
due to unmodeled gearbox or mechanical inefficiencies [31].

VII. CONCLUSION

Legged robots have the potential to perform agile behav-
iors in order to accomplish complex tasks. In this work,
we showed that it is possible for a robot to learn highly
agile behaviors using a mentor combined with a three-stage
learning process. Our framework consists of finding the
right mentor using a simplified task, generalizing to the
full problem and finally dropping out the mentor. We tested
our framework using PPO and ARS in a realistic physics
simulation. Our framework enabled the robot to successfully
learn to jump over 0.9m gaps and 0.2m vertical hurdles.
Empirical analysis of the torques, power consumption and
speed of the simulated motors showed that the emerged
behaviors are efficient and feasible to be deployed on a real
robot. Given the successful simulation results, our next step
is to transfer these policies to a physical robot with a similar
form factor (e.g. Unitree A1). We also plan to extend our
repertoire of agile behaviors to tackle parkour on an obstacle
course.

REFERENCES

[1] M. H. Raibert, Legged robots that balance, 1986.
[2] H.-W. Park, P. M. Wensing, and S. Kim, “High-speed bounding

with the MIT Cheetah 2: Control design and experiments,” The
International Journal of Robotics Research, vol. 36, no. 2, pp. 167–
192, 2017.

[3] D. J. Hyun, J. Lee, S. Park, and S. Kim, “Implementation of trot-to-
gallop transition and subsequent gallop on the MIT Cheetah I,” The
International Journal of Robotics Research, vol. 35, no. 13, pp. 1627–
1650, 2016.

[4] R. Briggs, J. Lee, M. Haberland, and S. Kim, “Tails in biomimetic
design: Analysis, simulation, and experiment,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE,
2012, pp. 1473–1480.

[5] A. Patel and M. Braae, “Rapid acceleration and braking: Inspirations
from the cheetah’s tail,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2014, pp. 793–799.

[6] M. Khoramshahi, H. J. Bidgoly, S. Shafiee, A. Asaei, A. J. Ijspeert,
and M. N. Ahmadabadi, “Piecewise linear spine for speed–energy
efficiency trade-off in quadruped robots,” Robotics and Autonomous
Systems, vol. 61, no. 12, pp. 1350–1359, 2013.

[7] P. Eckert, A. Spröwitz, H. Witte, and A. J. Ijspeert, “Comparing
the effect of different spine and leg designs for a small bounding
quadruped robot,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2015, pp. 3128–3133.

[8] H.-W. Park, P. M. Wensing, S. Kim et al., “Online planning for
autonomous running jumps over obstacles in high-speed quadrupeds,”
in Robotics: Science and Systems, 2015.

[9] Q. Nguyen, M. J. Powell, B. Katz, J. D. Carlo, and S. Kim, “Optimized
Jumping on the MIT Cheetah 3 Robot,” in 2019 International Con-
ference on Robotics and Automation (ICRA), 2019, pp. 7448–7454.

[10] “Boston Dynamics (2018) Atlas - the world’s most dynamic hu-
manoid.” https://www.bostondynamics.com/atlas, 2018.

[11] G. Bledt and S. Kim, “Extracting Legged Locomotion Heuristics
with Regularized Predictive Control,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA), 2020, pp. 406–412.

[12] Y. Yang, K. Caluwaerts, A. Iscen, T. Zhang, J. Tan, and
V. Sindhwani, “Data Efficient Reinforcement Learning for Legged
Robots,” CoRR, vol. abs/1907.03613, 2019. [Online]. Available:
http://arxiv.org/abs/1907.03613

[13] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bohez,
and V. Vanhoucke, “Sim-to-real: Learning Agile Locomotion For
Quadruped Robots,” in Robotics: Science and Systems, 2018. [Online].
Available: https://arxiv.org/pdf/1804.10332.pdf

[14] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019.

[15] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” in Robotics:
Science and Systems, 2019.

[16] Z. Xie, P. Clary, J. Dao, P. Morais, J. Hurst, and M. van de Panne,
“Iterative reinforcement learning based design of dynamic locomotion
skills for cassie,” arXiv preprint arXiv:1903.09537, 2019.

[17] X. B. Peng, E. Coumans, T. Zhang, T.-W. E. Lee, J. Tan, and S. Levine,
“Learning Agile Robotic Locomotion Skills by Imitating Animals,” in
Robotics: Science and Systems, 07 2020.

[18] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, p. eabc5986, Oct 2020. [Online]. Available:
http://dx.doi.org/10.1126/scirobotics.abc5986

[19] X. B. Peng, G. Berseth, and M. van de Panne, “Terrain-Adaptive
Locomotion Skills Using Deep Reinforcement Learning,” ACM Trans-
actions on Graphics (Proc. SIGGRAPH 2016), vol. 35, no. 4, 2016.

[20] ——, “Dynamic terrain traversal skills using reinforcement learning,”
ACM Trans. Graph., vol. 34, no. 4, pp. 80:1–80:11, Jul. 2015.

[21] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne,
Y. Tassa, T. Erez, Z. Wang, S. Eslami et al., “Emergence of locomotion
behaviours in rich environments,” arXiv preprint arXiv:1707.02286,
2017.

[22] Z. Xie, H. Y. Ling, N. H. Kim, and M. van de Panne, “ALLSTEPS:
Curriculum-driven Learning of Stepping Stone Skills,” 2020.

[23] X. B. Peng, P. Abbeel, S. Levine, and M. van de Panne,
“DeepMimic: Example-guided Deep Reinforcement Learning of
Physics-based Character Skills,” ACM Trans. Graph., vol. 37,

no. 4, pp. 143:1–143:14, Jul. 2018. [Online]. Available: http:
//doi.acm.org/10.1145/3197517.3201311

[24] Y. Tang, J. Tan, and T. Harada, “Learning Agile Locomotion via
Adversarial Training,” 2020.

[25] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, “Learning by
Cheating,” 2019.

[26] A. Iscen, K. Caluwaerts, J. Tan, T. Zhang, E. Coumans, V. Sindhwani,
and V. Vanhoucke, “Policies Modulating Trajectory Generators,” in
CoRL, 2018, pp. 916–926.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” CoRR, vol.
abs/1707.06347, 2017.

[28] H. Mania, A. Guy, and B. Recht, “Simple random search provides
a competitive approach to reinforcement learning,” CoRR, vol.
abs/1803.07055, 2018. [Online]. Available: http://arxiv.org/abs/1803.
07055

[29] B. Katz, J. D. Carlo, and S. Kim, “Mini Cheetah: A Platform
for Pushing the Limits of Dynamic Quadruped Control,” in 2019
International Conference on Robotics and Automation (ICRA), 2019,
pp. 6295–6301.

[30] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2020.

[31] A. Badri-Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, E. Badri,
and A. Ijspeert, “Towards Dynamic Trot Gait Locomotion: Design,
Control, and Experiments with Cheetah-cub, a Compliant Quadruped
Robot,” The International Journal of Robotics Research, vol. 32, 07
2013.

https://www.bostondynamics.com/atlas
http://arxiv.org/abs/1907.03613
https://arxiv.org/pdf/1804.10332.pdf
http://dx.doi.org/10.1126/scirobotics.abc5986
http://doi.acm.org/10.1145/3197517.3201311
http://doi.acm.org/10.1145/3197517.3201311
http://arxiv.org/abs/1803.07055
http://arxiv.org/abs/1803.07055
http://pybullet.org

	I Introduction
	II Related Work
	III Problem Definition
	IV Method
	V Experimental Setup
	VI Results
	VI-A Learning Results
	VI-B Analysis

	VII Conclusion
	References

